

66 we decided to launch a study, seeking statistical
evidence of a relation between sustainability
investments and reductions in common charges 99

CONTENTS

$\mathbf{1}$	Executive Summary
$\mathbf{2}$	Introduction
$\mathbf{3}$	Methodology
4	Sample
$\mathbf{5}$	Main Findings
6	Details about the model
$\mathbf{7}$	External factors that can impact Consumption Variations

EXECUTIVE
SUMMARY
This study searched for statistical evidence of a relation between the
investments in water
and energy efficiency
measures and the
reductions in common
charges.
We also identified external factors that might impact energy and water consumption costs, causing deviation from expected savings the investment results

Finally, we developed inally, we developed how consumption ow consumption might evolve if no investment was carried out.

MAIN FINDINGS

1\#

INVESTMENT
 REDUCES
 CONSUMPTION
 COSTS, BUT THIS REDUCTION IS NOT
 NECESSARILY
 PASSED ON TO TENANTS.

Although there is a reduction in energy and/or water consumption costs, only in 8 out of 20 cases the common charges ${ }^{(1)}$ were reduced.

2\#

ENERGY

REPRESENTS UP
TO 20\% OF TOTAL
SERVICE CHARGES ${ }^{(2)}$;
SAVINGS IMPACT
CUSTOMER
SATISFACTION

LEVELS

the correlation between energy and water savings and customer satisfaction is strong (75\%) although its connection to tenant satisfaction is lower (19\%).

3\#

SAVINGS IMPACTED BY EXTERNAL FACTORS
such as management
decisions, climate variation supplier charges and external events

4\#

WITHOUT
INVESTMENTS
LANDLORD RENTAL
INCOME WILL
decrease
TO MAINTAIN
AFFORDABILITY
RATES ${ }^{(3)}$.
With no investment in sustainable actions owners would lose about 4\% in rents if the decision was to not increase tenants' service charges.

In recent years, we have carried out several infrastructure investments our properties more sustainable and efficient. These actions are expected to not only have a positive impact on consumption, but also on our tenants, through the reduction of common to increase the satisfaction Tevels of both tenants and visitors.
up, we decided to launch a study, seeking statistical evidence of a investments and reduction in common charges. We also identified external factors that might impact consumption costs, causing deviation from expected savings, to better results. resuls.
Finally, we developed a model to forecast how
consumption might evolve if no investment was carried out.

66 we developed a model to forecast how landlord income is affected when the goal is to keep the tenant's affordability rate at sustainable levels. 9

The sample was created from investment actions that were considered to
have a significative impact on consumption, and included 10 shopping centres from the Sonae Sierra portfolio (6 from Portugal, 3 from Spain and 1 from Germany).
From the 27 actions identified (between 2015 to 2017), data normalisation was applied to aggregate by year and by shopping centre, as some assets we investment. Overall, the sample decreased to 20 actions, 16 in the field of energy, and 4 for water.

1\# INVESTMENT REDUCES CONSUMPTION COSTS, BUT IS NOT NECESSARILY PASSED ON TO TENANTS

- There is no statistical evidence of causality between sustainability investments and the reduction of common charges. In only 8 out of 20 cases were charges reduced, despite the investments having an effective impact on consumption (16 out of 20 cases). (see table) \qquad	ACTION	SHOPPING	$\underset{\substack{\text { COMMON CHARGES } \\(\mathrm{Y} 1-\mathrm{YO})}}{\substack{\text { Cen }}}$	SAVING
	E1	SC1	81,581€	-2.40\%
	E1	SC3	11,618€	-0.10\%
	E1	SC4	$-4,125 €$	-0.20\%
	E1	SC6	-330,694€	-5.40\%
	E1	SC 8	-17,996€	-1.00\%
	E1	SC 9	67,803E	3.10\%
	E1	SC 10	19,450€	0.80\%
	E2	SC2	45,606€	1.10\%
	E2	SC3	-89,020€	-1.00\%
	E2	SC 4	2,913€	0.20\%
	E2	SC 6	-89,544E	-1.50\%
	E2	SC 7	-443,143€	-17.30\%
	E2	SC 10	-9,045€	0.40\%
	E3	SC2	-80,823E	2.00\%
	E3	SC5	27,490€	1.10\%
	E3	SC 10	-45,226€	1.80\%
	W1	SC2	-2,550€	-0.10\%
	wi	SC3	-11,618€	0.10\%
	w1	SC 8	54,363E	2.90\%
	W1	SC9	67,803E	3.10\%
		total	-613,380€	-2.30\%

- The expected savings represent a reduction of 6pp in total consumption, while the real savings represent a reduction of 6.7pp. This translates into an achievement of 109%, which rises to 139% where the 4 examples of increased consumption are left out. (see table) \qquad \rightarrow	ACTION	$\underset{\substack{\text { SHOPPING } \\ \text { CENTRE }}}{\text {. }}$	$\begin{gathered} \text { ENERGY (KWH) } \\ \text { AND WATER (M3) } \\ \text { CONSUMTIONSAVING } \\ \text { (Y1-YO) } \end{gathered}$	CONSUMPTION SAVING WEIGHT	$\begin{gathered} \text { EXPECTED } \\ \text { SAVINGS } \\ \text { KWH/M }{ }^{3} \text { (Y1-YO) } \end{gathered}$	$\begin{aligned} & \text { EXPECTED } \\ & \text { SAVING } \\ & \text { WEIGHT } \end{aligned}$	DIFFERENCE REAL VS EXPECTED	$\%$ ACHIEVEMENT
	E1	SC1	-620,240	-7.3\%	-140,042	-1.70\%	-480,198	443\%
	E1	SC3	-325,820	-2.7\%	-562,000	-4.60\%	236,180	58\%
	E1	SC4	-210,865	-7.3\%	-105,535	-3.80\%	-96,330	191\%
	E1	SC 6	-38,527	-0.7\%	$-70,244$	-1.20\%	31,717	55\%
- The change in consumption savings weight can have different intensities of reduction: High (>5pp), Moderate (3pp to 5pp) and Low (<3pp). (see table) \qquad	E1	SC 8	-65,656	-2.3\%	-162,820	-5.70\%	97,164	40\%
	E1	SC9	-290,238	-6.2\%	-170,000	-3.70\%	-120,238	171\%
	E1	SC 10	99,622	3.7\%	-40,000	-1.50\%	139,622	-249\%
	E2	SC2	-198,309	-3.7\%	-172,000	-3.20\%	-26,309	115\%
	E2	SC3	-455,129	-3.8\%	-352,248	-3.00\%	-102,881	129\%
- In the last 4 years common charges invoiced to tenants rarely decreased. Increases meanwhile were usually connected to inflation, or expected permanent cost increases (e.g. expansions or refurbishments).	E2	SC 4	210,099	8.2\%	-241,468	-9.40\%	451,567	-87\%
	E2	SC 6	-206,029	-3.6\%	-28,285	-0.50\%	-177,744	728\%
	E2	SC7	-131,213	-4.6\%	-30,000	-1.00\%	-101,213	437\%
	E2	SC 10	-79,567	-2.9\%	-51,000	-1.80\%	-28,567	156\%
	E3	SC2	-80,165	-1.5\%	-26,000	-0.50\%	-54,165	308\%
	E3	SC5	-115,577	-3.2\%	-146,062	-4.00\%	30,485	79\%
	E3	SC 10	-133,230	-4.9\%	-78,737	-2.90\%	-54,493	169\%
	W1	SC2	-1,109	-4.4\%	-11,856	-47.10\%	10,747	9\%
	W1	SC 3	693	1.7\%	-16,632	-40.90\%	17,325	-4\%
	w1	SC 8	2,173	111\%	-1,474	-7.50\%	3,647	-147\%
	W1	SC9	-440	-1.8\%	-4,000	-16.20\%	3,560	11\%
		total	-2,630,526€	-6.7\%	-2,410,403	-6.10\%	-220,123	109\%

05.
 2\# ENERGY REPRESENTS UP TO 20\% OF TOTAL
 LEVELS

3\# SAVINGS IMPACTED BY EXTERNAL FACTORS

- The energy weight in total service charges varies between 9\% to 18\%. Assuming that all other costs are fixed, in order to decrease total service charges by 1pp, it is necessary to decrease energy costs between -5.5 pp to -11.3pp. The exact amount depends on the weight in total service charges, equal to common charges + marketing costs. (see table)

	SC1	SC 2	SC3	SC 4	SC 5	SC 6	SC 7	SC 8	SC 9	SC 10
Energy weight in service charges	18%	12%	11%	14%	13%	9%	15%	12%	15%	11%
pp needed for marginal decrease in service charges (-1pp)	5.5	8.1	9.4	7.4	8	11.3	6.7	8.1	6.8	9.2

- Savings tend to be absorbed in other technical
maintenance and cleaning), marketing or/and administrative costs (particularly taxes) Combined together these are important services for customers and tenants as they contribute to the shopping centre experience.
-The correlation between energy and water savings and customer satisfaction is strong (75\%); although its connection to tenant satisfaction is lower (19\%).

External factors can affect consumption and are tricky to measure. These include management decisions, climate variation, supplier changes and external events.

- The elasticity of savings is lower where high-impact changes have already been implemented, as the margin for improvement is lowe

4\# LANDLORD RENTAL INCOME WILL DECREASE WITHOUT INVESTMENTS TO MAINTAIN AFFORDABILITY RATES

- Gross Lettable Area (GLA), visits, sales, vehicles and climate variables such as rain and temperature
are important indicators to calculate future consumption as they are strongly correlated. are important indicators to calculate future consumption as they are strongly correlated.
- Other common charge elements absorbed the consumption savings of $2,631,844 \mathrm{kWh}(290,889 €)$ while forecasts for energy consumption in the absence of investment rose $17,436,595 \mathrm{kWh}$ (about $1,893,478 €$).

This figure represents an increase of $+3 \%$ in service charges paid by tenants, assuming no other tem was likely to decrease in compensation, tenants will have to pay more

- Owners would lose about 4% in rents (+1pp considering the value of extra-discounts given in the period under analysis) if the decision was taken to not increase tenants' service charges to maintain the average tenants affordability rate in each shopping centre.

66 Efficiency investments play a key role in shopping centre operations due to the long-term impact they have on landlord incomes. However, not every kind of intervention guarantees a reduction in consumption, as sometimes external events impact the expected savings. 9

HOW CAN THE
SHOPPING CENTRE BENEFIT?

Efficiency investments play a key role in shopping play a key role in shopping the long-term impact they have on landlord incomes. However, not every kind of intervention guarantees a reduction in consumption as sometimes extern expected savings.

- A centre's investments should be promoted as an efficiency strategy to achieve savings. This helps maintain high enants satisfaction

The monitoring of external factors can help with calculations of t difference between values.

It is also important to classify investment types by their expected impact on costs, as there are
different intensities of different intensities o exchanging older technology have a higher mpact, whereas the savings intensity is marginal when the shopping centre is already more efficient in terms of energy or water

With this approach to data governance, owners can start to assess the rea mpact of investment

The purpose of the model was to explore tools would help forecast absence of investment or action. The approach was exploratory, assuming that an evolution in consumptio would follow the same volution of other key variables. It enabled us to reate algorithms that independent prediction variables.
his simple approach This simple approac possible explanations, from external factors to interna aspects, that could have mpacted the selected variables

It is also essentially a conceptual approach, largely skipping historical impacts, and leaving out
qualitative factor to measure the strength the impact according to its type.
In order to model the data, select shoprinelthe dat select ushod as pilots, with several methodologies applied. We combined benchmarks, correlations and seasonality analysis to understand annual energy consumption, and egression models (simple and multivariable)
to identify the most robust model for predicting tion variations

The variables used in the test were: Energy kWh, Water m³, Visits, Sales €, Sales sam $€, \mathrm{Nr}$ Investments, Vehicles, Annual Average Temperature, Annual Maximum temper temperature, Rain mm, Nr days with rain, Occupancy rate GLA, Consumption per visit and cooling degree days

Y1 without impact = YO * (1+X\%) * (1+Y\%)
Where $x \%$ represents the \% saving from the type of action
and Y\% represents other factors that can be positive or negative.

From the analysis, we found that GLA, Visits, Sales and Vehicles are mportant indicators calculate the evolution are strongly correlated.

Seasonality inputs are also relevant both for estimating consumption nd fine-tuning impact estimations.

We found that some

variables are good predictors on their own, or more successful combine variables include
performance indicators (visis vehicles and sales) and climate indicators (rain and number of days with rain).
The model is most effective when it combines all these approaches, as some events might affect

SAMPLE

There is a strong positive relationship between GLA or Visits with sales and consumption (energy water). In the sample consumption varies between 57 to 103 kWh by sam, while water varies between 0.22 to 0.58 m by sam. This depends on the centre layout (open air versus closed and number of an external garden

In terms of visits, the energy consumption varies between 1.16 to 2.91 kWh per visit, while water varies
between 0.0011 to $0.0051 \mathrm{~m}^{3}$. These indicators can be used to forecast consumption and its evolution.
Seasonality is useful to understand the monthly distribution of consumption values, and estimate costs during the year
07.

The tests made in the sample, to forecast the last quarter of 2018 for energy verage error of $+/-3 p p$ average error of +/-3pp,
which is low. In future, we can use this to estimate values, assuming that consumption will ssentially follow the same seasonal paths as the previous year.

We also looked in-depth at weather indicators, namely Annual Avg Temperature, Annual Max temperature Annual Min temperature, ain mm and Nr days with rain.

Using one shopping centre from the sample as example, rain quantity and turned ou doys with rain predictors for energy variations, either individually or combined with visits.

66 There are three main aspects of energy
consumption, with the significance of each defined by its weight in terms of total consumption. That means that the level of impact gained from sustainability investments depends on the energy type being targeted

99

08.

TIME:

We can't currently differentiate between postive changes driven by
acts of investment from those resulting from operational decisions. Sometimes consumption diminishes not due to action, but because it is
surpassed by other events surpassed by other events impacts are real.
After actions are implemented, the impact is usually instantaneous. Yet
even where equipment is automated, the human factor - and its potential to modify the process - cannot be discounted. This can ultimately increase or decrease consumption levels, meaning that sometimes the real outcome diminishes over time.

TYPE OF INVESTMENT AND SAVINGS IMPACT

There are three main aspects of energy consumption, with the significance of each defined by its weight in terms of total consumption (see evel of impact gained from sustainability investments depends on the energy type being targeted.
For example, all actions elating to air conditioning and lighting tend to have a consumption savings. In the sample under analysis, al investments were distributed by type of action and the majority impact.

08.

THE SHOPPING CENTRE LIFECYCLE:

Our historical investme

 plan, applied to our mages, is making a difference in terms of improving equipment savings. New opportung in terms of technology have been adopted in the medium-term as best practice and standard serviceMoving forward, the
elasticity of savings is lower
where high-impact changes
have already been
implemented, as the margin
for improvement is lowe.

However, in terms of technical expenses, we costs. This includes tho related to preventive actions, implying mandatory visits from suppliers to check on the equipment. Other expenses, considered corrective actions, are represented by hourly costs and involve requesting magement requesting expert visits.

These types of actions are ad-hoc and can positively negatively affect tot costs.

08.

SUPPLIERS AND CLIMATE:

Currently, energy suppliers are chosen yearly, and in some cases, every six months, depending on energy costs and the portfolio size. All other contracts, usually 3 ye in terms of operations, the focus is on securing the best quality with the owest price. If, in the past, most services were concentrated in a few offer in the market has encouraged a shift towards better cost management, ven if negotiation adds to
the work load

Climate variations such as temperature extremes or ander anfect energy and
However, there are nitiatives which help ecrease consumptio such as channelling decrease internal temperatures, or reusing water that comes from other places such as cooling towers.
Gardening costs are affected by temperature and climate, as more water is needed during high temperatures or a lack of

The number of visits is highly correlated with energy \& water consumption in most centres.
When there is an increase in visits, internal temperatures also rise due to human body heat.
So, all events (internal and external) that drive more people to the shopping centre impact the need for cooling, security and maintenance.

66 Climate variations such as temperature extremes or rain also affect energy and water consumption. 99

ABOUT

Sonae Sierra is an international real estate company committed to delivering solutions to meet its client ambitions

With over 30 years' experience in
developing, investing and managing retail real estate across four different continents, at Sonae Sierra we have unrivalled expertise and an enviable track record of success behind us.

The sustainability credentials of our real estate assets, and those of our clients, is of the utmost importance to us and we have long been committed to looking at ways to reduce costs and improve efficiency.

If you are looking for the best pathway and bespoke tools to unleash your true sustainable value in real estate assets, uncover sustainable opportunities, improve competitiveness and increase revenue over time, let's get in touch

Daniel Santos dacsantos@sonaesierra.com
sonaesierra.com

SUSTAINABILITY
INVESTMENT
IMPACT
RESEARCH
ASSESSMENT

